Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015

نویسندگان

  • D N Baker
  • A N Jaynes
  • S G Kanekal
  • J C Foster
  • P J Erickson
  • J F Fennell
  • J B Blake
  • H Zhao
  • X Li
  • S R Elkington
  • M G Henderson
  • G D Reeves
  • H E Spence
  • C A Kletzing
  • J R Wygant
چکیده

Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (storm time ring current index) value reaching -223 nT. On 22 June 2015 another strong storm (Dst reaching -204 nT) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed a rich variety of pitch angle features including strong "butterfly" distributions with deep minima in flux at α = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported "impenetrable barrier" at L ≈ 2.8 was pushed inward, but not significantly breached, and no E ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Overall, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acceleration and loss of relativistic electrons during small geomagnetic storms

Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst > -50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orb...

متن کامل

Effects of ULF wave power on relativistic radiation belt electrons: 8–9 October 2012 geomagnetic storm

Electromagnetic ultralow-frequency (ULF) waves are known to play a substantial role in radial transport, acceleration, and loss of relativistic particles trapped in the Earth’s outer radiation belt. Using in situ observations by multiple spacecraft operating in the vicinity of outer radiation belts, we analyze the temporal and spatial behavior of ULF waves throughout the geomagnetic storm of 8–...

متن کامل

Are energetic electrons in the solar wind the source of the outer radiation belt?

Using data from WIND, SAMPEX (Solar, Anomalous, and Magnetospheric Particle Explorer), and the Los Alamos National Laboratory (LANL) sensors onboard geostationary satellites, we investigate the correlation of energetic electrons in the 20-200 keV range in the solar wind and of high speed solar wind streams with relativistic electrons in the magnetosphere to determine whether energetic electrons...

متن کامل

Global storm time depletion of the outer electron belt

The outer radiation belt consists of relativistic (>0.5 MeV) electrons trapped on closed trajectories around Earth where the magnetic field is nearly dipolar. During increased geomagnetic activity, electron intensities in the belt can vary by orders of magnitude at different spatial and temporal scales. The main phase of geomagnetic storms often produces deep depletions of electron intensities ...

متن کامل

Toward Understanding Radiation Belt Dynamics, Nuclear Explosion-Produced Artificial Belts, and Active Radiation Belt Remediation: Producing a Radiation Belt Data Assimilation Model

The space radiation environment presents serious challenges to spacecraft design and operations: adding costs or compromising capability. Our understanding of radiation belt dynamics has changed dramatically as a result of new observations. Relativistic electron fluxes change rapidly, on time scales less than a day, in response to geomagnetic activity. However, the magnitude, and even the sign,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 121  شماره 

صفحات  -

تاریخ انتشار 2016